Solving for Cosine of Angle Sum Given Trigonometric Values
Given the trigonometric values tan A 1 and sin B frac{1}{sqrt{2}}, find the value of cos (A B). This problem involves understanding fundamental trigonometric concepts and applying the cosine addition formula. Letrsquo;s break down the steps to solve this problem.
Step 1: Identify Angle Values
For tan A 1:
- This implies that A 45^circ or A frac{pi}{4} radians, since tan 45^circ 1.
For sin B frac{1}{sqrt{2}} frac{sqrt{2}}{2}:
- This implies that B 45^circ or B 135^circ, since sin 45^circ frac{1}{sqrt{2}}.
Step 2: Apply the Cosine Addition Formula
The cosine addition formula is given by:
cos (A B) cos A cos B - sin A sin B
Step 3: Determine cos A, sin A, cos B, and sin B
Since A 45^circ:
cos A cos 45^circ frac{1}{sqrt{2}} sin A sin 45^circ frac{1}{sqrt{2}}Since B 45^circ or B 135^circ:
cos B frac{1}{sqrt{2}} sin B frac{1}{sqrt{2}}or cos B -frac{1}{sqrt{2}} sin B frac{1}{sqrt{2}}
Step 4: Substitute Values into the Formula
Now, we substitute these values into the cosine addition formula:
cos (A B) left(frac{1}{sqrt{2}}right) left(frac{1}{sqrt{2}}right) - left(frac{1}{sqrt{2}}right) left(frac{1}{sqrt{2}}right)
cos (A B) frac{1}{2} - frac{1}{2} 0
Thus, the value of cos (A B) is 0.
Alternate Solutions
Letrsquo;s also consider other possible values for angles A and B based on the given trigonometric values:
When A 225^circ and B 45^circ: cos (A B) cos 270^circ 0 When A 45^circ and B 135^circ: cos (A B) cos 180^circ -1 When A 225^circ and B 135^circ: cos (A B) cos 360^circ 1These results show the importance of considering all possible values of angles in trigonometric problems.
Summary
To find the value of cos (A B), we utilized the trigonometric values tan A 1 and sin B frac{1}{sqrt{2}}. By identifying the appropriate angles and applying the cosine addition formula, we found that cos (A B) can be 0, -1, or 1. Understanding the properties of trigonometric functions and the cosine addition formula are crucial for solving such problems.