Solving for Cos(A - B) Using Trigonometric Identities and Values
Given the trigonometric equations cos(AB) frac{1}{2} and sin A frac{1}{sqrt{2}}, we aim to find the value of cos(A - B). This process involves several steps using trigonometric identities, particularly the cosine of sum and difference identities, and the Pythagorean identity.
Step 1: Applying the Pythagorean Identity
First, we use the Pythagorean identity to find cos A
The Pythagorean identity states:
sin^2 A cos^2 A 1
Given that sin A frac{1}{sqrt{2}}, we can find cos A
(sin^2 A cos^2 A 1)
(left(frac{1}{sqrt{2}}right)^2 cos^2 A 1)
(frac{1}{2} cos^2 A 1)
(cos^2 A frac{1}{2})
(cos A pm frac{1}{sqrt{2}})
Step 2: Identifying Possible Angles for A - B
Given that cos(AB) frac{1}{2}, we know that the possible angles for A - B are:
A - B 60^circ 360^circ k or A - B 300^circ 360^circ k, where k in mathbb{Z}
For simplicity, we will consider the case where:
A - B 60^circ
Step 3: Solving for B
Given A - B 60^circ, we can express B in terms of A:
B 60^circ - A
Step 4: Using the Cosine and Sine Subtraction Formulas
Using the cosine and sine subtraction formulas:
cos(A - B) cos A cos B sin A sin B
We need to find cos B) and (sin B
cos B cos(60^circ - A) cos 60^circ cos A sin 60^circ sin A frac{1}{2} cos A frac{sqrt{3}}{2} sin A
sin B sin(60^circ - A) sin 60^circ cos A - cos 60^circ sin A frac{sqrt{3}}{2} cos A - frac{1}{2} sin A
Step 5: Substituting the Values of (cos A) and (sin A)
Given that cos A frac{1}{sqrt{2}} (or -frac{1}{sqrt{2}}), we substitute these values into the equations for (cos B) and (sin B:
cos B frac{1}{2} cdot frac{1}{sqrt{2}} frac{sqrt{3}}{2} cdot frac{1}{sqrt{2}} frac{1}{2sqrt{2}} frac{sqrt{3}}{2sqrt{2}} frac{1 sqrt{3}}{2sqrt{2}}
sin B frac{sqrt{3}}{2} cdot frac{1}{sqrt{2}} - frac{1}{2} cdot frac{1}{sqrt{2}} frac{sqrt{3}}{2sqrt{2}} - frac{1}{2sqrt{2}} frac{sqrt{3} - 1}{2sqrt{2}}
Step 6: Calculating (cos(A - B))
Now, substituting the values of cos B and sin B into the equation for cos(A - B)
cos(A - B) cos A cos B sin A sin B
frac{1}{sqrt{2}} cdot frac{1 sqrt{3}}{2sqrt{2}} frac{1}{sqrt{2}} cdot frac{sqrt{3} - 1}{2sqrt{2}}
frac{1 sqrt{3}}{2cdot 2} frac{sqrt{3} - 1}{2cdot 2} frac{1 sqrt{3} sqrt{3} - 1}{4} frac{2sqrt{3}}{4} frac{sqrt{3}}{2}
Conclusion
Thus, the value of cos(A - B) is found to be:
cos(A - B) frac{sqrt{3}}{2}