Geometry Problem: Finding Angle BAD / sin CAD in Triangle ABC

Geometry Problem: Finding Angle BAD / sin CAD in Triangle ABC h1, h2, h3, p, pre { margin: 10px; }

Geometry Problem: Finding Angle BAD / sin CAD in Triangle ABC

Introduction to the Geometry Problem

In triangle ABC, angles B and C are given as B π/3 (60°) and C π/4 (45°). Angle A is therefore 75°. Point D divides BC internally in the ratio 1:3. The problem is to find the ratio of Angle BAD to sin Angle CAD.

Step-by-Step Solution

Let BD x and DC 3x. Thus, BC 4x. We can use the Law of Sines in triangle ABC to find the side lengths:

c/sin 45 b/sin 60 a/sin 75

c/sin 45 4x/sin 75, thus c 4x * sin 45 / sin 75 2.92820323x

b 4x * sin 60 / sin 75 3.586301889x

Calculating AD

In triangle ABD:

        AD^2  AB^2   BD^2 - 2AB*BD*cos(B)
        AD^2  (2.92820323x)^2   (x)^2 - 2 * 2.92820323x * x * cos(60°)
        AD^2  8.574374158x^2 - x^2  6.646170928x^2
        AD  2.578016859x
    

Further Calculations

In triangle ACD:

        AD^2  AC^2   CD^2 - 2AC*CD*cos(C)
        AD^2  (3.586301889x)^2   (3x)^2 - 2 * 3.586301889x * 3x * cos(45°)
        AD^2  12.86156124x^2   9x^2 - 15.21539031x^2  6.646170928x^2
        AD  2.578016859x
    

In triangle ABD, using the Law of Sines:

        c/sin ADB  x/sin BAD  2.578016859x/sin 60
        sin ADB  2.92820323x * sin 60 / 2.578016859x  0.983662451
        ADB  arcsin(0.983662451)  79.62891666°
    

In triangle ACD:

        b/sin ADC  3x/sin CAD  2.578016859x/sin 45
        sin ADC  3.586301889x * sin 45 / 2.578016859x  0.983662452
        ADC  arcsin(0.983662452)  100.3710834° (Corrected Check)
    

Therefore, BAD ADC - 60° 180° - 79.62891666° - 60° 40.37108334°

Final Ratio

Angle CAD 75° - BAD 75° - 40.37108334° 34.62891666°

Thus, the ratio: BAD / sin CAD 40.37108334 / sin(34.62891666) 71.04344336

Final Answer

Therefore, the final answer is 71.04344336.

Keywords

The keywords for this article are: Triangle, Geometry, Trigonometry, Angles, Ratio